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Abstract

Dynamic voltage scaling (DVS) is widely recognized
as an effective way to reduce high CPU power con-
sumption. The technique trades CPU performance
for power reduction and energy savings. As a re-
sult, there have been many proposals on how to
effectively manage a DVS processor to minimize
the CPU power consumption while keeping the per-
formance degradation within an acceptable range.
Most of these proposals use a simple performance-
prediction model which assumes that the execution
time will double if the CPU speed is cut in half.
Unfortunately, this model overly exaggerates the
impact that the CPU speed has on the execution
time. It is only in the worst case that the execu-
tion time doubles when the CPU speed in halved.
In general, the actual execution time is less than
double. In addition to addressing the importance
of an accurate performance model, we develop such
a model and formulate an optimal DVS schedule,
which serves as the basis of a new interval-based
DVS algorithm. We then evaluate the effectiveness
of the algorithm via physical measurements on a
notebook computer.
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Figure 1: The power density of Intel CPUs.

1 Introduction

The power consumption of a CPU continues to fol-
low Moore’s Law by doubling every 18 months.
Equally alarming is the growth of the power density,
as shown in Figure 1. Because high power consump-
tion raises temperature, reduces reliability, and in-
creases the costs of thermal packaging, power de-
livery, and cooling, dynamic voltage scaling (DVS)
has been proposed as a way to address these is-
sues. DVS allows the CPU supply voltage to be
adjusted at run time. This ability to dynamically
adjust voltage for power savings is critical as CPU
power consumption is directly proportional to the
square of voltage. Since reducing the voltage may
also require the CPU to be reduced, performance
with respect to speed (or execution time) degrades.
In short, DVS trades off performance for power re-
duction.

Many algorithms have been proposed to effec-
tively manage a DVS processor by minimizing its
power consumption within some performance-loss
bounds. In general, a DVS algorithm needs to
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determine when to adjust the current frequency-
voltage setting (scaling points) and to which new
frequency-voltage setting (scaling factors). For ex-
ample, current interval-based DVS algorithms (e.g.
[23, 18]) set the scaling points at the beginning of
each time interval and determine the scaling factors
by predicting the upcoming CPU workload.

To calculate the scaling factors, a performance
model relating application performance to the CPU
speed is required. Many DVS algorithms assume
that the performance of an application scales pro-
portionally to the CPU speed, i.e.,

T (f) = (1/f) · W

where T (f) (in seconds) is the execution time of
a task running at frequency f , and W (in cycles)
is the amount of the CPU work to be done. In
other words, this model predicts that the perfor-
mance will be improved by two-fold when the CPU
speed is twice as fast.

Unfortunately, the above simple model ignores
two important issues. First, the CPU work require-
ment W of a task is often unpredictable in realistic
systems [18]. Second, W is not always independent
of the frequency f [37, 30]. It is well-known that
the performance of the memory- or I/O-bound ap-
plications cannot be improved in parallel with the
CPU speed. In fact, Predtechenski [26] observed
that the majority of application-class benchmarks
exhibit the following relationship between the exe-
cution time T (f) and the frequency f .

T (f) = (1/f) · c1 + c0 (1)

where c0 and c1 are two constants. A simple calcu-
lation reveals that the number of CPU cycles W is
indeed influenced by the frequency.

W = f · T (f) = c1 + c0 · f

This paper addresses the aforementioned prob-
lems in the following way. We assume that a con-
stant CPU work requirement still exists regardless
of the operating CPU frequency; it may not be in
terms of CPU cycles, but it is definitely embedded
in an accurate performance-prediction model T (f).
Given such a performance model, we formulate a
DVS scheduling problem and characterize its opti-
mal solution. Based on the optimal schedule, we
propose a new DVS algorithm that takes into ac-
count the performance behavior of a program, and
results in a solution that is more effective than pre-
vious DVS algorithms. The main contributions of
this paper include the following.

• A theoretical result on the optimal DVS
schedule in terms of our new perfor-
mance model. The significance of the the-
oretical result is that it can also be applied to
a DVS processor that does not strictly obey the
following relationship between frequency f and
voltage V ,

f = k · (V − VT )α/V (2)

where k, VT , and α are constants, 1 ≤ α ≤ 2
and VT ≪ V . Though many DVS algorithms
derive their schedules based on this relation-
ship, it is seldom established in real DVS pro-
cessors due to the limited set of frequency and
voltage settings.

• The design of an interval-based DVS al-
gorithm based on the theoretical result.
In the algorithm, the performance model is
abstracted as a single parameter called the
performance-scalability factor. Conceptually,
it is similar to the scalability of performance
in the field of parallel processing, but here the
number of processors is replaced by various
CPU frequencies.

• The evaluation of the algorithm through
physical measurements on a laptop. Five
popular DVS algorithms are compared for a
representative set of SPEC95 benchmarks. The
experimental results show that an accurate
performance model is very important for an ef-
fective DVS algorithm and that our new DVS
algorithm is the most effective among the im-
plemented DVS algorithms.

The rest of the paper is organized as follows: Sec-
tion 2 overviews some of the previous theoretical
results on the optimal DVS schedule. Section 3
presents the new theoretical result in term of per-
formance model and proposes a new DVS algorithm
based on the result. The experimental results of
the algorithm are presented in Section 4, followed
by more related work in Section 5 and future work
in Sections 6.

2 Background

A typical DVS system consists of frequency and
voltage combinations at which a processor is al-
lowed to operate. We refer to each such combi-
nation as a frequency-voltage pair (V, f) or a per-
formance level that is indexed by the frequency
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f ∈ [fmin, fmax]. At each performance level f , the
system power consumption is denoted as Pf . For a
DVS system that only provides n performance levels
fi, we assume f1 < · · · < fn. Finally, as with pre-
vious work, we assume that the performance model
T (f) is non-increasing; that is, a task running at a
higher frequency will finish faster.

The essence of many DVS algorithms can be de-
scribed as solving the following minimization prob-
lem: given a task of workload W cycles and deadline
D seconds, find out a schedule { tf } such that when
the task is executed for tf seconds at frequency f ,
the total energy usage E is minimized, the deadline
D is met, and the required work W is performed.

min E =
∑

f

Pf · tf (3)

subject to

∑

f tf ≤ D (4)
∑

f f · tf = W (5)

tf ≥ 0 (6)

Without loss of generality, we assume D ≥
minf W/f ; otherwise, the problem has no feasible
solution.

Previous theoretical results on the characteriza-
tion of the optimal solution {t∗f} rely heavily on
Pf = P (f) where P (f) is a convex function. For
example, Yao et al. [38] showed that the optimal
schedule is

t∗f =

{

D if f = W/D
0 otherwise

In other words, running the task at a single fre-
quency and finishing the task execution right at the
deadline will minimize the total energy usage. This
result can be applied to a DVS system with an infi-
nite number of performance levels if P (f) is convex
on [0,∞] and P (0) = 0. For a system with only a
few performance levels available, Ishihara and Ya-
suura [15] showed that scheduling with at most two
frequencies, neighboring to W/D, will minimize the
energy consumption. Qu [27] put it more concretely
that the optimal schedule {t∗f} is

t∗f =











fj+1·D−W
fj+1−fj

f = fj

D − t∗fj
f = fj+1

0 otherwise

where fj ≤ W/D < fj+1. It should not be hard to
see why this works since

P ′(f) = P (fi−1) ·
fi − f

fi − fi−1
+ P (fi) ·

f − fi−1

fi − fi−1

for fi−1 ≤ f < fi+1 is indeed convex [16].
Saewong and Rajkumar [29] extended the above

results for a more realistic case of P (f) convex on
[fmin, fmax]. The new result says that running the
task at a single frequency will still minimize the
total energy usage, and this optimal frequency f∗

can be computed using the following equation.

f∗ = arg min
f≥W/D

P (f)/f

The aforementioned result of f∗ = W/D then be-
comes a special case of this extended result since
P (f)/f is nondecreasing when P (f) is convex on
[0,∞] and P (0) = 0, In fact, the result will hold as
long as

Pf2
− Pf1

f2 − f1
≤

Pf3
− Pf2

f3 − f2
≤ · · · ≤

Pfn
− Pfn−1

fn − fn−1

Note that the condition can be removed when D ≥
maxf W/f since the problem becomes the classical
fractional knapsack problem.

The theoretical results mentioned above are ex-
tensively used by many DVS algorithms. Unfor-
tunately, these results all depend on the two as-
sumptions: W is known a priori and T (f) = W/f .
The performance model T (f) = W/f does not work
well for the memory- and I/O-bound applications
[14, 37, 30]. Furthermore, it is parameterized in
the CPU work requirement W that is often unpre-
dictable in realistic systems [18]. In the next sec-
tion, we will present a methodology that computes
W and T (f) implicitly and appropriately models
the performance of memory- and I/O-bound appli-
cations relative to f .

3 Theoretical Results

In order to eliminate the parameter W , we assume
that the total work of a task is evenly distributed
over time and replace Equation (5) with the follow-
ing:

∑

f

tf
T (f)

= 1

To simplify the discussion, instead of solving for
the variables tf , the new problem solves a scaled
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version of variables, rf = tf/T (f). The complete
formulation is listed as follows.

min
∑

f Ef · rf (7)

subject to

∑

f T (f) · rf ≤ D (8)
∑

f rf = 1 (9)

rf ≥ 0 (10)

where Ef = Pf · T (f) is the total energy usage of
a task running at frequency f . Again, without loss
of generality, we assume that D ≥ minf T (f). The
optimal solution {r∗f} of the new problem can be
characterized by the following theorems. Due to the
space limitation, we leave all proofs to the technical
report.

Theorem 3.1 (Unconstrained Scheduling for
Energy Minimization) For D ≥ maxf T (f), the
optimal solution {r∗f} is

r∗f =

{

1 f = f∗

0 otherwise

where f∗ = argminf Ef .

Theorem 3.2 (Deadline-Constrained
Scheduling for Energy Minimization) For

D < maxf T (f), if the ratios γi = E(fi)−E(fi+1)
T (fi)−T (fi+1) are

negative and non-increasing, the optimal solution
{r∗f} is

r∗f =











D−T (fj+1)
T (fj)−T (fj+1) f = fj

1 − r∗fj
f = fj+1

0 otherwise

where T (fj+1) < D ≤ T (fj).

Theorem 3.1 presents an uninteresting case that
when the deadline is sufficiently large, choosing
among all performance levels the level that mini-
mizes the total energy usage is the best strategy.
For the case of D < maxf T (f), Theorem 3.2 basi-
cally says that if E(f) is a convex, non-increasing
function of T (f), then running at the ideal single
frequency f∗, where T (f∗) = D, will minimize the
total energy usage. If the frequency f∗ is not di-
rectly supported by the system, the two neighbor-
ing frequencies fj and fj+1, T (fj+1) < D < T (fj),
can emulate it and results in the minimum energy
consumption.
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Figure 2: The execution time and CPU energy con-
sumption of a 600-1600 MHz Intel Pentium M pro-
cessor with six performance levels.

To appreciate Theorem 3.2, let us consider a 600-
1600 MHz Intel Pentium M processor with the per-
formance levels as specified in its datasheet [5]. For
the moment, we assume E(f) = V 2 and T (f) =
1/f . The constants are removed since we only look
into the convexity of E(T (f)). Figure 2 depicts the
convexity of E(T (f)), where all the performance
levels except at 1.4 GHz will satisfy the condition
of Theorem 3.2. In fact, the level at 1.4 GHz should
never be used in any DVS algorithm because its
speed can be emulated by other levels with lower
energy consumption [19, 21]. Specifically, 1.4 GHz
can be emulated by running half of the time at 1.2
GHz and half the time at 1.6 GHz. This consumes
(15 W + 24.5 W)/2 = 19.75 W while the 1.4-GHz
setting consumes 20 W. In this paper, we assume
that our DVS system does not contain these energy-
inefficient levels.

Based on Theorem 3.2, we propose a new interval-
based DVS algorithm beta. In developing this
new algorithm, we first abstract the performance
model as a single parameter called the performance-
scalability factor β ∈ [0, 1], i.e.,

T (f)

T (fmax)
= β ·

fmax

f
+ (1 − β) (11)

The parameter β indicates the sensitivity of the ap-
plication performance to the change in CPU speed.
If β = 1, that means the execution time will be cut
in half when the CPU speed is twice as fast. If β =
0, the execution time will remain constant even run-
ning at the slowest frequency. In terms of Equation
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1. Compute the ideal single frequency f∗.

f∗ =

{

fmin if β ≤ δ
fmax/(1 + δ/β) otherwise

2. Figure out fj and fj+1.

fj ≤ f∗ < fj+1

3. Compute the ratios, rfj
and rfj+1

.

rfj
=

(1+δ/β)/fmax−1/fj+1

1/fj−1/fj+1

rfj+1
= 1 − rfj

4. For every second, run rfj
at frequency fj

and run rfj+1
at frequency fj+1.

Figure 3: The new DVS algorithm beta. The quan-
tity δ specifies the performance-loss bound in terms
of the relative execution time, i.e., D = (1 + δ) ·
T (fmax).

(1), β =1 if T (f) = c1/f , and β = 0 if T (f) = c0.
The new DVS algorithm beta is shown in Figure 3.

4 A Case Study

In this section, we describe our experimental envi-
ronment in which we evaluate the beta DVS algo-
rithm and present experimental results.

4.1 Hardware Platform

The hardware platform in our experiments is an
HP NX9005 notebook computer. This computer
includes a mobile AMD Athlon XP 2200+ proces-
sor with a 256-KB level-two cache, 256-MB DDR
SDRAM, 266-MHz front-side bus, a 30-GB hard
disk, and a 15-inch TFT LCD display. The proces-
sor supports DVS under software control by writing
the desired frequency and voltage to the machine-
specific registers in the AMD Athlon XP. The five
performance levels for the experiments are shown in
Table 1. The transition time from one level to an-
other level is set as 30 microseconds. Through the
measurements, we found that the entire laptop con-
sumes 29.2 – 50.8 watts when idle, and 33.8 – 65.8
watts when running a CPU-intensive benchmark.

f (MHz) V
1067 1.15
1333 1.25
1467 1.30
1600 1.35
1800 1.45

Table 1: The five energy efficient performance levels
in the HP NX9005 laptop.
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Figure 4: The experimental setup.

Figure 4 shows the experimental setup. The ex-
perimental results were collected through a Yoko-
gawa WT210 digital power meter [12]. The
power meter continuously samples the instanta-
neous wattage sampled at a rate of 50 kHz (i.e., ev-
ery 20 µs). The laptop runs the Linux 2.4.18 kernel.
All the benchmarks were compiled by GNU com-
pilers with optimization level -O6. All the bench-
marks were run to completion; each run took over a
minute. During the measurements, the battery was
removed and the monitor was turned off.

A few representative SPEC95 benchmarks were
used for the experiments. The SPEC benchmarks [6]
emphasize the performance of the CPU and mem-
ory, but not other computer components such as
I/O (disk drives), networking or graphics. In this
paper, we chose to use SPEC benchmarks because
they demonstrate a range of sensitivity to the CPU
frequency change, as shown in Figure 5. The β
value for each benchmark was derived by profil-
ing T (f) for all the performance levels on the lap-
top and estimating using the least-square fitting on
Equation (11).
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program β

swim 0.02
tomcatv 0.16
hydro2d 0.19
su2cor 0.27
applu 0.34
apsi 0.37
mgrid 0.51
wave5 0.52
turb3d 0.79
fpppp 1.00

program β

compress 0.37
vortex 0.65
gcc 0.82
ijpeg 0.95
perl 0.99
m88ksim 0.99
go 1.00
li 1.00

Figure 5: The entire SPEC95 benchmark suite and
the corresponding β value for each benchmark on
the HP NX9005 notebook computer.

4.2 Software Platform

To illustrate the importance of an accurate per-
formance model in an effective DVS algorithm,
we compared our algorithm beta with a few other
interval-based implementations. The experiments
by no means represent a comprehensive compari-
son among all existing approaches. Nevertheless,
we feel that it illustrates our point well enough. The
following is a brief description of each algorithm we
tested.

opt This algorithm assumes Ef and T (f) for each
frequency f are known a priori. It uses a LP solver
to solve the minimization problem in Section 3 to
generate the optimal DVS schedule {r∗f} and ex-
ecutes the program using the schedule. In other
words, algorithm opt first executes the program at
frequency f1 for r∗f1

· T (f1) seconds, and then at
frequency f2 for r∗f2

· T (f2) seconds, and so on. Ac-
cording to Theorem 3.2, at most two r∗f ’s have non-
zero values; that is, algorithm opt algorithm will
adjust the performance level at most once during
the entire program execution.

2step This algorithm mimics the policy used in
Intel’s SpeedStep technology. The algorithm as-
sumes dual speeds in the system. It monitors the
CPU utilization rate (how long the CPU is active in
an interval) in each interval. If the CPU utilization
rate is higher than a pre-defined threshold level, the
algorithm will set the CPU to a fast speed; if it is
lower than the other pre-defined threshold level, the
CPU will be set to a low speed. In our implemen-

tation, these two threshold levels are 50% and 10%,
respectively.

freq This algorithm is similar to strategies that
reclaim the slack time between the actual process-
ing time and the worst-case execution time (e.g.,
[17, 22, 1, 2]). Specifically, the algorithm keeps
track of the amount of work remaining Wleft and
the time left before the deadline Tleft. The de-
sired frequency is then computed through f =
Wleft/Tleft. The algorithm is most effective when
there is a significant amount of the slack time, usu-
ally coming from the over-estimation of the worst-
case execution time.

mips This algorithm represents a strategy that is
guided by an externally specified performance met-
ric. Specifically, the new frequency fnew is com-
puted through

fnew = fprev · MIPStarget/MIPSobserved

where fprev is the operating frequency for the pre-
vious interval, MIPStarget is the externally specified
performance requirement, and MIPSobserved is the
real MIPS rate in the previous interval. In our ex-
periments, each benchmark has its own MIPStarget,
which is derived by measuring the MIPS rate for the
entire application and then dividing it by (1 + δ).
Algorithms in this category include [9, 4].

4.3 Experimental Results

Table 2 presents the experimental results across
all five aforementioned DVS algorithms. In gen-
eral, when a program is CPU intensive (β close to
1), there is little opportunity in reducing a signifi-
cant amount of energy within a tight performance
bound. The more appropriate strategy for this case
is through parallelism on multiple DVS processors.

Second, it can be seen that algorithm opt and beta
are on average more effective than algorithm mips.
On the other hand, algorithms 2step and freq have
no effect at all. Among all the tested algorithms, al-
gorithm 2step is the only one that does not need any
external information. All other algorithms have dif-
ferent abstractions of the performance model. The
experimental results suggest that an accurate per-
formance model is required for the DVS algorithm
to be effective.

Algorithm 2step has two tunable threshold val-
ues. However, it is an open question how to do this
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program β opt 2step freq mips beta
swim 0.02 1.00/0.57 1.00/1.00 1.00/0.95 1.00/0.79 1.00/0.57

tomcatv 0.16 1.04/0.72 1.00/1.01 0.99/0.95 1.02/0.99 1.05/0.75
su2cor 0.27 1.03/0.79 0.98/0.99 1.00/0.97 1.01/0.97 1.03/0.81

compress 0.37 1.03/0.88 1.00/1.00 1.00/0.95 1.03/0.89 1.04/0.85
mgrid 0.51 1.03/0.90 0.99/0.99 1.01/0.99 1.00/1.00 1.02/0.94
vortex 0.65 1.04/0.93 0.99/0.99 1.00/0.96 1.05/0.92 1.02/0.95
turb3d 0.79 1.04/0.94 1.00/1.00 1.02/0.96 1.00/1.00 1.03/0.97

go 1.00 1.05/0.96 1.00/0.99 1.02/0.98 1.00/1.00 1.03/0.97

Table 2: The effectiveness of the five different DVS algorithms. Each table entry is in the format of
relative-time/relative-energy with respect to the total execution time and system energy usage when
running the application at the highest performance level throughout the entire execution.

in a systematic fashion. Grunwald et al. [11] found
that these threshold values are application depen-
dent and data sensitive. In fact, the algorithm will
not have an appropriate threshold setting that can
make it as effective as beta or mips. This is because
the CPU for non-interactive applications is active
almost all the time.

Algorithm freq uses the number of CPU cycles
as the metric for specifying the CPU work require-
ment. However, the number of CPU cycles varies
significantly across performance levels. Since this
number is usually the largest at the highest perfor-
mance level, algorithm freq exaggerates the amount
of the CPU work to be done and results in less ef-
fective energy reduction. As a result, algorithm freq
is more appropriate for CPU-intensive applications
only.

Algorithm mips performs better than algorithm
freq. This is because the number of retired instruc-
tions is a better metric for specifying the CPU work
requirement. For the benchmarks we tested, the
number of instructions tends to remain constant
across all performance levels. Unfortunately, the
MIPS rate varies significantly as well, especially for
CPU-intensive applications.

Finally, algorithm opt requires the total execution
time to be known a priori. It is therefore the most
appropriate to use the algorithm in special-purpose
computing systems. On the other hand, our new
beta algorithm only relies on the abstract perfor-
mance model β and the performance-loss bound δ.
The effectiveness of the algorithm is determined by
how accurately the β value can capture the perfor-
mance impact with respect to the CPU frequency.

Note that β accurately captures the performance
impact if Equation (1) holds. By leveraging the ob-

servation that the number of instructions remains
constant across all performance levels, one can re-
place execution time with the reciprocal of the
MIPS (million instructions per second) rate to fa-
ciliate the derivation of β on the fly (i.e., without
profile runs) through linear regression on frequency-
varying MIPS rates.

5 Related Work

In this paper we focused on DVS algorithms for a
single application. The DVS algorithms for a set
of tasks have also been studied extensively, espe-
cially in the context of real-time systems. In terms
of the optimal DVS schedule for a a task set, Yao
et al. [38] provided a polynomial-time algorithm
for a set of independent tasks when preemption is
allowed and the task priority is not fixed. The al-
gorithm is optimal on a DVS system with infinite
performance levels if P (f) is convex and there is no
transition overhead. Kwon and Kim [16] extended
the algorithm to a DVS system with a few perfor-
mance levels. Yun and Kim [39] showed that if
the task priority is fixed, then the problem becomes
NP-hard; that is, no optimal polynomial-time algo-
rithm is likely to exist. As illustrated by Quan and
Hu [28], the problem is more difficult to solve be-
cause the preemption relationship among the tasks
is much more complex to analyze. The problem is
NP-complete if the underlying system can vary the
voltage within a maximum rate when the task pri-
ority is not fixed [27].

There are many proposed DVS algorithms in the
literature. Due to the space limitation, we only dis-
cuss work related to interval-based DVS algorithms
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for general-purpose computer systems. For DVS in
real-time systems, Unsal and Koren provide a re-
cent survey [33]. Weiser et al. [35] first presented
the idea of interval-based DVS algorithms for a
general-purpose operating system. Govil et al. [10]
and Lorch and Smith [18] extended the work and
considered a large number of different workload-
prediction and speed-selection policies. Some algo-
rithms were examined by Pering et al. [23] through
trace-driven simulation and by Grunwald et al. [11]
through physical measurements. Both studies show
that these algorithms result in unsatisfactory per-
formance degradation.

There are at least two reasons why these interval-
based algorithms are not able to hide the per-
formance penalty. First, future workloads are
sometimes irregular and thus unpredictable. To
tackle this problem, a group of researchers (e.g.,
[20, 32, 34]) applied a bit of control theory to de-
sign new DVS algorithms. For example, Sinha and
Chandrakasan [32] proposed to use an adaptive fil-
tering technique to “smooth out” the noises in the
past workload profile. Pouwelse et al. [25] argued
that the application itself can provide some useful
information to the DVS algorithm. For example,
Ghiasi et al. [9] and Childers et al. [4] suggested to
use externally provided, desired IPC rate to direct
the DVS algorithms. Hsu and Kremer [13] used the
compiler techniques to embed the scaling points and
factors in the executable. Others [2, 22, 31] associ-
ated compiler-derived scaling points with a piece of
code that can calculates the scaling factors at run
time.

Second, the optimal interval length is system and
application dependent. Chandrasena et al. [3] pro-
posed to buffer interval results until the scaling fac-
tor matches well with the system’s available fre-
quencies. That is, the scaling points are at the
beginning of intervals but not every one of them.
The other proposal is to detect changes or episodes
in the aggregate behavior [8, 20].

6 Conclusions and Future

Work

In this paper we have presented a DVS schedul-
ing problem that incorporates a parametric perfor-
mance model and that does not depend on the ex-
plicit CPU work requirement. The optimal solution
for the scheduling problem was characterized. The

significance of the optimality theorem is that the
theorem does not rely on a specific relationship be-
tween frequency and voltage in a performance level
that many previous DVS algorithms assume. Based
on the characterization of the optimal schedule, a
new interval-based DVS algorithm beta was pro-
posed. In the algorithm, the performance model
is abstracted as a single parameter β. The algo-
rithm was compared against a few other interval-
based DVS algorithms through the physical mea-
surements on a laptop. The experimental results
show that an accurate performance model is indeed
very important.

We plan to study whether we can estimate the
abstracted performance model β reasonably accu-
rately on the fly for a large class of T (f). One
possible way is to use the techniques proposed by
Lorch and Smith [18] in estimating the CPU work
requirement at run time. Since the number of CPU
cycles is no longer a good metric for this purpose,
we plan to investigate whether the number of in-
structions will be a better candidate. We also would
like to compare our DVS algorithm beta with a few
more implementations such as [7, 13, 19, 20, 24, 36].
Finally, we are also looking into applying our new
DVS algorithm to the high-performance computing
platforms for a better energy efficiency and thermal
management.

References

[1] N. AbouGhazaleh, D. Mossé, B. Childers, and
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